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(leaky waves) changes as different material parameters, electric size (frequency and thickness) and
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ity over the thickness and the constitutive parameters for antenna applications of interest to the
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1 Executive Summary

Metamaterials such as left-handed materials (LHMs), where both permittivity and permeability
are negative, have attracted great attention due to their novel and unique electromagnetic proper-
ties. The metamaterials have potential applications such as radio frequency and microwave device
miniaturization. Because excited complex surface modes have slowly exponential decaying fields on
the air-slab interface, the directivity for dipoles over a grounded metamaterial slab is much higher
than directivity with conventional double positive (DPS) materials. This structure is very useful
to study slot antennas and leaky-wave antennas.

We propose to investigate leaky waves and their excitation with multilayered metamaterials.
The objective of this project is to enhance antenna performance with excitations of leaky waves.
First, we investigate a grounded dielectric slab with double negative (DNG) materials. Dramatically
different dispersion curves of evanescent surface modes (electromagnetic fields that exponentially
decay both in air and inside the slab) are observed, indicating that they are highly dependent on
the medium parameters. As the counterpart of the improper complex leaky modes in a slab with
a double positive (DPS) medium, the complex modes in a slab with a DNG medium are proven
to be exclusively proper. They have exponentially decaying fields in the air region and are termed
complex surface modes. There are an infinite number of complex surface modes and they cannot
be suppressed. Further investigation of the Poynting vector shows that those complex modes do
not carry away power in both transverse and longitudinal directions. However, the complex surface
modes play an important role in the far field radiating from the interface between the air region
and the grounded slab.

Secondly, we read Tamir and Kou’s paper and other papers on leaky waves in asymmetric slabs.
By ’Asymmetric’ it means that the material above and below the slab can have different dielectric
constant, which makes the discussion more general. Tamir and Kou claim that there are eight
different leaky-wave fields guided by an asymmetric layer configuration, but only four of the eight
can be excited in conventional DPS materials. Those eight leaky waves can be divided into four
forward and four backward leaky waves, or four co- and four contra-leaky waves. It is found that
for a lossless DPS grounded slab, there are only two improper complex modes (leaky waves). If the
slab is lossy, the conventional surface wave modes become complex modes, which are called leaky
waves by Tamir and Kou. A plasma slab will add another type of proper complex modes. For a
grounded slab with DNG materials, only two proper regular complex modes exist for a lossless slab.
If the slab is lossy, the proper surface wave modes may become proper complex modes or improper
complex modes.

Thirdly, we investigated the Sommerfeld integral path (SIP) for dielectric slab with double
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negative metamaterials. It is found that layered double negative materials have different SIPs as
compared to conventional layered double positive media. In a layered medium, the Green’s function
is written as a Sommerfeld-type integral, whose integrand has poles on the kρ-plane which corre-
spond to the eigenmode solutions of the same structure with the source removed. After the proper
integral path has been established, there are two ways to represent the total filed. The first one is
often to deform the path to a branch cut (BC) with poles captured by the branch cut, which leads
to a spectral representation. The second way is to deform the path to a steepest descent path (SDP)
with poles captured, which lead to a non-spectral representation for calculating far field (from the
integral along the SDP directly). When the medium is lossless, the Sommerfeld integral blows up
at real surface poles along the real axis. A common way to address this difficulty is to assume that
the medium is lossy and then monitor how pole loci change as the loss becomes smaller and smaller.
From our previous results, the Sommerfeld integral path is chosen as a half circle above or below the
poles depending on the kind of poles, the first kind or second kind. Physically the first kind of poles
corresponds to forward surface modes (the power flow is in the same direction as the wave propa-
gation), while the second kind of poles corresponds to backward surface modes (the power flow is
in the opposite direction as the wave propagation). We’ll talk about the poles in details in Section 3.

Finally, we investigated the radiation intensity and directivity of electric/magnetic dipoles over
a grounded slab to find optimal values of material parameters and thickness for a given frequency.
We considered a horizontal magnetic dipole (HMD) placed on a PEC and covered by a layer of
DNG material with thickness d and constitutive parameters εr and µr. The material is homoge-
nous, isotropic, non-dispersive. We optimize the directivity over the thickness and the constitutive
parameters. It is found that for a slab with a fixed electric size (proportional to the product of
the thickness and frequency), the directivity reaches the maximum when the product of εr and
µr is a certain value, which is determined by the electric size only. The maximum directivity is
proportional to εr and (d/λ0)

8/3. We also found the fitting formula for the maximum directivity
and µr as functions of the electric size and εr.

This final project report is organized as follows: The second section gives a brief introduction to
this field. Section 3 briefly reviews the mode properties, dispersion diagrams, and power flows and
plots pole loci versus frequency and media loss. Section 4 discusses the proposed new Sommerfeld
integral path and addresses two numerical issues associated with Sommerfeld integral that are
generally overlooked by the literature. Section 5 gives several numerical examples that demonstrate
the necessity of the new SIP for DNG media, and the superior radiation patterns of a simple dipole
antenna filled with DNG media. We also optimize structure for maximum directivity of HMD at
the broadside. Finally, Section 6 concludes the report with a summary, publication list, significant
events, and proposed future work.
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2 Introduction

Due to the progress in fabrication technology and nanotechnology, there is a renewed interest in
developing composite materials that mimic known material responses or that qualitatively have
new, physically realizable response functions that do not occur in nature [1]. Examples of engi-
neered materials include left-hand materials (LHMs), negative refraction materials, electromagnetic
band-gap (EBG) structured materials, and complex impedance surfaces. Those new metamaterials
often are generated by artificially fabricated inhomogeneities embedded in host media.

The metamaterials have potential applications such as radio frequency and microwave device
miniaturization. Microstrip antennas are easy to make and have the advantages of small size, light
weight, and low cost. Surface waves always exist on grounded conventional dielectric slabs, carry
away energy, and reduce antenna directivity. Leaky waves are a type of complex surface waves
and have slowly exponential decaying fields along the air-slab interface. The leaky waves make the
fields on the interface equivalent to an antenna with large aperture, which leads to the directivity
for dipoles over a grounded metamaterial slab is much higher than directivity with conventional
double positive (DPS) materials. This structure is very useful to study slot antennas and leaky-
wave antennas.

Pendry et al. proposed forming LHMs by introducing a periodic array of split ring resonators
and continuous wires [2]. LHMs have been demonstrated experimentally by Smith et al. and
Shelby et al. [3, 4]. Double negative (DNG) metamaterials have attracted intensive interest in the
last few years for their exotic properties, such as negative refraction, reversed Doppler effect, re-
versed Vavilov-Cerenkov effect, and the possibility of making perfect lens [5, 6, 2, 7, 3, 8, 9, 10, 11,
12, 13, 14, 15]. Many researchers have shown great interest in antenna applications of metamate-
rials [1, 16, 17, 18, 19, 20]. Ziolkowski and Kipple [16] showed analytically that the LHMs increase
radiation efficiency of small simple antennas. An electric or magnetic dipole radiating in a grounded
dielectric slab with ideal LHMs has been studied numerically and the proper complex modes (leaky
waves) result in a radiation pattern like a pencil beam at broadside [21,22].

Among the many applications and novel structures proposed for double negative metamateri-
als, the grounded dielectric slab with a DNG medium is the most fundamental structure because
it not only is the theoretical foundations for other more complicated structures but also has many
potential applications such as transmission line in real systems. [23] and [24] found that there are
special regions for transverse magnetic (TM) modes where two different propagation constants ex-
ist. [25,17,26,27] studied evanescent surface modes, which do not exist in a double positive (DPS)
medium. The grounded dielectric slab also supports complex surface modes even for lossless me-
dia [28, 18, 27]. Baccarelli and his colleagues proposed the concept of surface wave suppression,
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which ensures the absence of both ordinary and evanescent surface modes. This is very attractive
in view of taking the DNG medium as a potential substrate candidate to reduce edge diffraction
effects and enhance radiation efficiency for microstrip antennas [29, 21]. Later, the necessary and
sufficient conditions for surface wave suppressions were derived in [30,27].

In [18], radiations from a magnetic dipole on grounded dielectric slab with DNG medium are
studied. In analyzing such problems, the spectral domain approach is used and consists of two
steps: first, the electromagnetic fields generated by a dipole are solved in the spectral domain via
a Fourier transform; the spectral domain solution is then transformed back to the space domain.
The second step involves a Sommerfeld-type integral (integral from zero to infinity). For a lossless
medium there are a branch-cut issue and surface mode singularity blow-up problem [31]. A com-
mon way to remedy the aforementioned difficulties is to firstly assume that dielectric medium is
lossy and then let the loss decrease to zero [32]. With this method, the Sommerfeld integral path
(SIP) for conventional lossless medium is well-defined [31].

However, the grounded dielectric slab with a DNG medium has a mode spectrum that is much
more complicated than that of a conventional double positive medium [27]. Its complete eigenmode
spectrum consists of evanescent surface modes, ordinary surface modes, complex surface modes, and
continuous radiation modes. By contrast, the complete mode spectrum of a DPS medium consists
of only ordinary surface modes and radiation modes. In addition to the mode expansion, the
ordinary surface modes of a DNG medium bifurcate near their cutoff frequencies. Both of these two
phenomena contribute to the novel properties of the DNG medium. On the other hand,they make
the problems related to DNG medium more complicated. One of the most significant ramifications
is that a DNG medium requires a different Sommerfeld integral path, which will be elaborated on
in this report in great detail.
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3 Mode Properties and Surface Pole Loci

3.1 Eigen Value Problem

The structure we investigate is a grounded dielectric slab of thickness d (see Figure 1). Region I
is air with εr1 and µr1 and Region II is a DNG medium εr2 and µr2. Inherently, the passive DNG
media must be dispersive [9,33]. However, as is common in the literature, most of the DNG medium
considered in this paper is assumed to be non-dispersive for simplicity purpose. This assumption
is found acceptable because a small perturbation of εr and µr satisfies its dispersiveness.

y

z

x

εr2, µr2

εr1, µr1

z = 0

z = d

PEC

Figure 1: A grounded dielectric slab with lossless, isotropic and homogeneous DNG medium.

3.1.1 Decoupling of TE and TM Modes

For homogeneous isotropic medium, the two curl equations in source free region

∇× E = −jωµH (1)

∇×H = jωεE (2)
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are expanded into six scalar equations

∂Ey

∂z
+ γyEz = jωµHx (3a)

−γyEx = jωµHz (3b)

−∂Ex

∂z
= jωµHy (3c)

∂Hy

∂z
+ γyHz = −jωεEx (3d)

γyHx = jωεEz (3e)

∂Hx

∂z
= jωεEy (3f)

In deriving the above equations, ∂/∂x = 0 and ∂/∂y = −γy are used.

Equations (3a), (3e), and (3f) are functions of Ey, Ez, and Hx only. And (3b), (3c), and
(3d) are functions of Hy, Hz, and Ex only. This observation implies that under the condition of
∂/∂x = 0, the electromagnetic waves are decoupled into independent TE modes (Hy, Hz, Ex) and
TM modes (Ey, Ez, Hx). Notice that in this chapter, TE and TM modes are referred to horizontal
propagation direction (y-direction in Figure 1). This classification is also applicable to vertical
direction (z-direction in Figure 1) as will be seen in later chapters.

3.1.2 Homogeneous Helmholz Equation

Substituting (3b) and (3c) into (3d), we arrive at 1-D homogeneous Helmholz equation for TE
modes propagating along y-direction

d2Ex

dz2
+ (k2

i + γ2
y)Ex = 0 (4)

where k2
i = ω2εiµi, i = 1, 2, and

γy = α + jβ (5)

With the same procedure, we have 1-D homogeneous Helmholz equation for TM modes

d2Hx

dz2
+ (k2

i + γ2
y)Hx = 0 (6)
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3.1.3 Boundary Conditions

Equations (4) and (6) are 1-D differential equations valid for each source free region. Boundary
conditions must be applied to solve the problem.

At the interface of Region 1 and Region 2, tangential electric and magnetic fields are continuous.
So for TE modes

Ex1 |z=d = Ex2 |z=d (7a)

Hy1 |z=d = Hy2 |z=d (7b)

For TM modes

Ey1 |z=d = Ey2 |z=d (8a)

Hx1 |z=d = Hx2 |z=d (8b)

In Region 1, proper boundary condition requires vanishing field at infinity

Λ
∣∣
z=∞ = 0 (9)

or radiation condition [34]

lim
r→∞

r

[
∂Λ

∂r
+ jkΛ

]
= 0 (10)

where Λ = Ex1 for TE modes and Λ = Hx1 for TM modes. Notice that (9) is a special case of (10).
Solutions do not satisfy (10) are non-physical. However, they are still of importance as we will see
later.

In Region 2, there is boundary conditions of PEC at z = 0. For TE modes

Ex2

∣∣
z=0

= 0 (11)

For TM modes
∂Hx2

∂z

∣∣∣∣
z=0

= 0 (12)

3.1.4 Discrete TE Modes

The general solutions of (4) in region 1 and region 2 are

Ex1 = Ae−γz1(z−d) + Beγz1(z−d) (13)

Ex2 = Ce−γz2z + Deγz2z (14)
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where γ2
zi = −k2

0εriµri − γ2
y and i = 1, 2 is the layer index.

To satisfy boundary condition of (11), we have C = −D or

Ex2 = C sinh(γz2z) (15)

Surface waves have zero field at infinity. Thus in (13), one term must be removed. The
choice is arbitrary since we have two different choices for γz1 too. For example, one can choose

Ex1 = Beγz1(z−d) and γz1 = −
√
−k2

0εr1µr1 − γ2
y . This is the same as the choice of Ex1 = Ae−γz1(z−d)

and γz1 =
√
−k2

0εr1µr1 − γ2
y . To be consistent with literature, we use Ex1 = Ae−γz1(z−d) and assume

γz1 has positive real part.

With the above observation, Ex and Hy in each region are

Ex1 = Ae−γz1(z−d) (16a)

Ex2 = C sinh(γz2z) (16b)

Hy1 = − 1

jωµ1

∂Ex1

∂z
=

γz1

jωµ1

Ae−γz1(z−d) (16c)

Hy2 = − 1

jωµ2

∂Ex2

∂z
= − γz2

jωµ2

C cosh(γz2z) (16d)

Using boundary condition of (7), we have[
1 − sinh(γz2d)

γz1

µr1

γz2

µr2
cosh(γz2d)

] [
A
C

]
= 0

Non-trivial solutions require the determinant of the matrix to be zero. Therefore we arrive at eigen
equation for TE modes

γz1

µr1

sinh(γz2d) +
γz2

µr2

cosh(γz2d) = 0 (17)

where γz2 6= 0. To implicitly eliminate the fake solution of γz2 = 0, (17) is written as
µr2

γz2

sinh(γz2d) +
µr1

γz1

cosh(γz2d) = 0 (18)

3.1.5 Discrete TM Modes

With the same procedure, eigen equation for TM modes is
γz2

εr2

sinh(γz2d) +
γr1

εz1

cosh(γz2d) = 0 (19)
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3.1.6 Field Components of Discrete TE and TM Modes

The field components of discrete TE modes are (γz2 6= 0)

Ex1(y, z) = − sinh(γz2d)e−γz1(z−d)e−γyy (20a)

Ex2(y, z) = − sinh(γz2z)e−γyy (20b)

Hy1(y, z) = − 1

jωµ1

∂Ex1

∂z
= − γz1

jωµ1

sinh(γz2d)e−γz1(z−d)e−γyy (20c)

Hy2(y, z) = − 1

jωµ2

∂Ex2

∂z
=

γz2

jωµ2

cosh(γz2z)e−γyy (20d)

Hz1(y, z) = − γy

jωµ1

Ex1 =
γy

jωµ1

sinh(γz2d)e−γz1(z−d)e−γyy (20e)

Hz2(y, z) = − γy

jωµ2

Ex2 =
γy

jωµ2

sinh(γz2z)e−γyy (20f)

The field components of discrete TM modes are

Hx1(y, z) = − cosh(γz2d)e−γz1(z−d)e−γyy (21a)

Hx2(y, z) = − cosh(γz2z)e−γyy (21b)

Ey1(y, z) =
1

jωε1

∂Hx1

∂z
=

γz1

jωε1

cosh(γz2d)e−γz1(z−d)e−γyy (21c)

Ey2(y, z) =
1

jωε2

∂Hx2

∂z
= − γz2

jωε2

sinh(γz2z)e−γyy (21d)

Ez1(y, z) =
γy

jωε1

Ex1 = − γy

jωε1

cosh(γz2d)e−γz1(z−d)e−γyy (21e)

Ez2(y, z) =
γz

jωε2

Ex2 = − γy

jωε2

cosh(γz2z)e−γyy (21f)

3.1.7 Graphical Method

For ordinary real surface modes, γz1 = αz1 and γz2 = jβz2, where both αz1 and βz2 are real numbers.
Therefore (18) and (19) are rewritten as follows

µr1

µr2

(βz2d) cot(βz2d) = −αz1d for TE mode (22)

εr1

εr2

(βz2d) tan(βz2d) = αz1d for TM mode (23)

Furthermore, using relations γ2
zi = −k2

0εriµri − γ2
y and i = 1, 2 and eliminating γy lead to

(αz1d)2 + (βz2d)2 = (k0d)2(εr2µr2 − εr1µr1) (24)
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The evanescent surface modes have exponentially decaying electromagnetic fields in both air
and dielectric layer. For evanescent surface modes, γz1 = αz1 and γz2 = αz2, where both αz1 and
αz2 are real numbers. The eigen equations (18) and (19) are rewritten as

µr1

µr2

(αz2d) coth(αz2d) = −αz1d for TE mode (25)

εr1

εr2

(αz2d) tanh(αz2d) = −αz1d for TM mode (26)

The constitutive equations are now

(αz1d)2 − (αz2d)2 = (k0d)2(εr2µr2 − εr1µr1) (27)

The graphical representations [35,36] of the above equations are shown in Figure 2. In fact the
figure combines two figures. The right-half is for the ordinary modes governed by Equations (22) to
(24), and the left half is for the evanescent modes governed by Equations (25) to (27). The index
notation used here follows [35]: only TE even modes (but with odd indices, TE1, TE3, . . . ) and TM
odd modes (but with even indices, TM0, TM2, . . . ) can exist in a PEC grounded dielectric slab.
Notice that in the first and second quadrants, αz1 is positive and the fields exponentially decay in
the air region (proper); in the third and fourth quadrants, αz1 is negative and the fields exponen-
tially increase in the air region (improper). The x-axis is divided into two segments. The right
half is for βz2d, whose fields inside the dielectric layer are sine/cosine standing waves (ordinary);
while the left half is for αz2d, whose fields inside the dielectric layer are exponentially distributed
(evanescent). The intersection in the second quadrant represents the proper evanescent surface
mode which does not exist for a DPS medium. This can be seen from (22), (23), (25), and (26):
the difference for DPS and DNG media is a minus sign on the left sides of these equations, which im-
plies that one can get results for a DPS medium by mirroring Figure 2 along its horizontal axis. By
doing this, the intersection in the second quadrant will be in the third quadrant, and thus improper.

Another important fact that must be recognized from Figure 2 is that the ordinary surface
wave solutions for a DNG medium are no longer monotonic. It is clear from the sub-figure in
the left corner of Figure 2(a) that there are two intersections as the radius of the dashed circle
decreases, which corresponds to a decrease in electric size, i.e., k0d. Once the circle has only one
tangential point with the solid line, further decreasing k0d will cause this mode to be cutoff. Similar
occurrence happens to TM modes in Figure 2(b) in a more obvious way. These two possible modes
have two different power distributions. One has more power flowing in the air region than that in
the dielectric region, making the total power flow in the same direction as the phase velocity. The
other is in the opposite way and displays the backward property. More details on the Poynting
vectors are addressed in later sections.
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Figure 2: Graphical solutions for TE and TM modes. Solid lines in the first and fourth quadrants
represent (22) or (23); solid lines in the second quadrant represent (25) or (26); dashed line in the
first and fourth quadrants represents (24); dashed line in the second and third quadrants represents
(27). The medium parameters are: εr1 = 1, µr1 = 1, εr2 = −2.5, µr2 = −0.5.
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3.2 Mode Properties

This section states different mode properties, such as evanescent surface modes, complex surface
modes, Poynting vectors, etc. We define some terms here first.

Discrete or continuous modes: Discrete modes refer to discrete solutions of eigen equations
derived in last section and continuous modes are the waves satisfying the radiation boundary condi-
tion and having continuous spectrum, which are the contribution for the integral along the branch
cuts.

Proper or improper modes: Proper modes exist physically and the fields of the improper
modes increase exponentially to infinity at the infinity. So the improper modes cannot exist phys-
ically and are not part of complete spectrum. For the improper modes, αz1 = Re[γz1] < 0. For
the proper modes, Re[γz1] ≥ 0. The modes with Re[γz1] > 0 are also called surface wave modes
because the fields decay exponentially away from the interface in the top region.

Real or complex modes: For a lossless slab, the waves with a real propagation constant (γy

or γρ) are called as real modes, otherwise, they are called as complex modes. In general, all modes
are complex for a lossy slab.

Ordinary or evanescent modes: Two types of real modes may be supported by a lossless
slab: ordinary modes (standing waves in the dielectric region, αz2 = Re[γz2] = 0) and evanescent
modes (the fields change exponentially in the dielectric region, βz2 = Im[γz2] = 0).

3.2.1 Evanescent Surface Wave Modes

The normalized effective dielectric constant εeff = (β/k0)
2 for evanescent surface wave modes is

larger than both εr1µr1 and εr2µr2. Therefore γz2 =
√
−k2

0εr2µr2 − γ2
y = k0

√
εeff − εr2µr2 is a pure

real number. The electromagnetic fields inside the dielectric layer are no longer sine/cosine standing
waves, but of the form of A sinh(αz2d). Figure 3 shows a typical field configuration for evanescent
surface wave modes. Notice that the field extends to the air region far away and decay very slowly.

It is found that the dispersion curves for evanescent surface wave modes are complicated and
highly dependent on medium parameters. Figure 4 shows two dispersion diagrams for TE1 mode
with different medium parameters. The solid line in Figure 4 is for proper mode while the dotted
line is for improper mode. The dashed lines in both figures depict the value of

√
εr2µr2. They are

the watersheds by which one can tell evanescent surface wave modes from ordinary ones.
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Figure 3: Demonstration of field distribution for a TE evanescent surface wave mode. Medium
and structure parameters are: εr1 = 1, µr1 = 1, εr2 = −2.5, µr2 = −2.5, k0d = 0.1 rad. Solved
propagation constant: γz2/k0 = j4.27819.

In Figure 4(a), evanescent surface wave mode has low cutoff point. As the electric size in-
creases, the ordinary surface wave mode becomes an evanescent surface wave mode and its effective
dielectric constant, εeff , keeps increasing. In Figure 4(b), however, the situation is reversed. The
evanescent surface mode has a high cutoff point above which it becomes the ordinary surface wave
mode. When k0d is small, the evanescent surface wave mode has an extremely large εeff that
decreases rapidly as the electric size increases. One can refer to the sub-figures of Figure 4 to check
its validations, which are graphic solutions shown in earlier section.

3.2.2 Complex Surface Modes and Its Poynting Vectors

It is well known that the complete proper mode spectrum of a lossless DPS dielectric slab include
discrete surface wave modes and continuous radiation modes, both of which are real surface wave
modes [34, 36]. With a DNG medium, it is proved that all complex roots of the eigen equations
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Figure 4: Two possible dispersion curves for TE proper surface modes (solid lines) and TE improper
leaky modes (dotted lines). The dashed line, representing

√
εr2µr2, is the watershed for evanescent

surface mode and ordinary surface modes.
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Figure 5: Demonstration of field distribution for a TE complex surface wave mode. Medium and
structure parameters are: εr1 = 1, µr1 = 1, εr2 = −2.5, µr2 = −2.5, k0d = 1.5 rad. Solved
propagation constant: γy/k0 = 0.8261 + j1.1253.

are on the top Riemann sheet. These solutions, termed complex surface waves, form another set
of proper modes. Unlike real surface wave modes, complex surface wave modes have high cutoff
electric size, which means that they exist only when k0d is small. Therefore, there are an infinite
number of complex surface wave modes from very small electric size all the way to large electric
size as can be seen later in Figure 7. Figure 5 shows field distribution of a typical complex surface
wave mode. The electromagnetic fields decay pretty fast in the air region.

The existence of an infinite number of complex surface wave modes at any frequency seems
somehow annoying in terms of suppressing surface wave modes since they will carry away power
and lower the radiation efficiency. Fortunately, a careful examination on the Poynting vector elim-
inates this possibility.

The Poynting vector is defined as

S =
1

2
E×H∗ (28)
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And we have the following trigonometry identities

sinh(a + jb) = sinh a cos b + j cosh a sin b (29)

cosh(a + jb) = cosh a cos b + j sinh a sin b (30)

|sinh(a + jb)|2 = sinh2 a + sin2 b =
1

2
[cosh(2a)− cos(2b)] (31)

|cosh(a + jb)|2 = cosh2 a− sin2 b =
1

2
[cosh(2a) + cos(2b)] (32)

sinh(a + jb) cosh∗(a + jb) =
1

2
[sinh(2a) + j sin(2b)] (33)

sinh∗(a + jb) cosh(a + jb) =
1

2
[sinh(2a)− j sin(2b)] (34)

Using the field components in Section 3.1.6, we have for TE mode

STE
y1 = −1

2
Ex1H

∗
z1 = −

γ∗y
4jωµ∗1

[cosh(2αz2d)− cos(2βz2d)] e−2αz1(z−d)e−2αy (35)

STE
y2 = −1

2
Ex2H

∗
y2 = −

γ∗y
4jωµ∗2

[cosh(2αz2z)− cos(2βz2z)] e−2αy (36)

STE
z1 =

1

2
Ex1H

∗
y1 = − γ∗z1

4jωµ∗1
[cosh(2αz2d)− cos(2βz2d)] e−2αz1(z−d)e−2αy (37)

STE
z2 =

1

2
Ex2H

∗
y2 =

γ∗z2

4jωµ∗2
[sinh(2αz2z) + j sin(2βz2z)] e−2αy (38)

The total power flow in z-direction for TE mode is

P TE
y (y)

e−2αy
=

∫ d

0

STE
y2 dz +

∫ ∞

d

STE
y1 dy

= −
γ∗y

8jωµ∗2

[
sinh(2αz2d)

αz2

− sin(2βz2d)

βz2

]
−

γ∗y
8jωµ∗1αz1

[cosh(2αz2d)− cos(2βz2d)] (39)

And for TM mode we have

STM
y1 =

1

2
Ey1H

∗
x1 =

γy

4jωε1

[cosh(2αz2d) + cos(2βz2d)] e−2αz1(z−d)e−2αy (40)

STM
y2 =

1

2
Ez2H

∗
x2 =

γy

4jωε2

[cosh(2αz2z) + cos(2βz2z)] e−2αy (41)

STM
z1 = −1

2
Ey1H

∗
x1 =

γz1

4jωε1

[cosh(2αz2d) + cos(2βz2d)] e−2αz1(z−d)e−2αy (42)

STM
z2 = −1

2
Ez2H

∗
x2 = − γz2

4jωε2

[sinh(2αz2z) + j sin(2βz2z)] e−2αy (43)
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The total power flow in y-direction for TM mode is

P TM
y (y)

e−2αy
=

∫ d

0

STM
y2 dz +

∫ ∞

d

STM
y1 dz

=
γy

8jωε2

[
sinh(2αz2d)

αz2

+
sin(2βz2d)

βz2

]
+

γy

8jωε1αz1

[cosh(2αz2d) + cos(2βz2d)] (44)

Although the equations of the total power flow (39) and (44) are quite complicated, the result
turns out to be simply zero [37] as can be seen by the following physical argument. To give out
a clear picture of the power flow density, the Poynting vector is drawn in Figure 6. Dotted lines
are the boundaries of a conjectured box with dimension of 4 mm × 20 mm. The power flow has
different directions in the air and inside the dielectric layer. The average total power flowing out
of the box via the left and right side walls is equal to the power flowing into the box from the top
wall. Now assuming the top wall is moved to infinity, there is no power flowing into the box from
the top wall since the complex surface modes have zero fields at infinity. According to the energy
conservation law, the power exchange via the left side wall Py1 =

∫∞
0

Sy1(z, y)dz must be equal
to the power exchange via the right side wall Py2 =

∫∞
0

Sy2(z, y)dz. Note that the propagation
constant along y-direction is now a complex number γy = α + jβ where α 6= 0, and P1 and P2 are
related by P2 = P1e

−2α(y2−y1). To ensure P1 = P2, the only possibility is P1 = P2 = 0. Thus all the
complex surface modes have zero power flow in y-direction. They do not transport any energy.

3.3 Mode Spectrum of DNG Medium

As discussed in previous section, now we have got the eigen equations of transverse electric (TE)
and transverse magnetic (TM) modes for waves propagating in ρ-direction:

µr2

γz2

sinh(γz2d) +
µr1

γz1

cosh(γz2d) = 0 TE mode (45)

γz2

εr2

sinh(γz2d) +
γz1

εr1

cosh(γz2d) = 0 TM mode (46)

γzi = ±
√
−k2

0εriµri − γ2
ρ = αzi + jβzi (47)

where γzi (i = 1, 2) is the complex propagation constant along z-direction in Region I and II, and
γρρ̂ = γxx̂ + γyŷ = (α + jβ)ρ̂ is the propagation constant in xy-plane. Due to the double-valued
nature of the square root in the expression for γzi, mathematically there exist two types of solutions:
one has a positive real part of γz1 resulting in a zero field at infinity, and the other has a negative
real part of γz1 resulting in an infinitely large field at infinity. Physically, only the first group can
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Figure 6: The Poynting vector of a TE complex mode. Dotted lines are the boundary of a conjec-
tured box. Solid line is the interface of the dielectric slab and the air. The medium and structure
parameters are: εr1 = 1, µr1 = 1, εr2 = −2.5, µr2 = −2.5, d = 0.01 m, k0 = 100 rad/m. Solved
propagation constant: γy/k0 = 2.09195 + j0.86938.

exist. However, this by no means implies that the second group has little value. In fact, the second
group is important in both mathematical manipulations and real applications as leaky waves to be
discussed in detail in next section [38].

As described in detail in [27] and listed in Table 1, a conventional lossless DPS has only two
types of proper eigenmodes: a finite number of discrete ordinary real surface modes, and continuous
radiation modes, and any field solutions can be expressed as the superposition of these two kinds of
modes. With DNG media, the mode set becomes much more complicated. In addition to discrete
ordinary surface modes and continuous radiation modes, two discrete surface modes (evanescent
real modes and complex modes), are also part of its complete mode spectrum. Furthermore, unlike
in DPS media that have only a finite number of discrete surface wave modes, the DNG media have
an infinite number of discrete complex modes that further complicate mode solutions [27,39].
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Figure 7: Dispersion diagrams for all modes. Solid lines are for normalized β of the proper modes.
Dashed lines are for normalized α of the proper modes. Dotted lines are for normalized β of the
improper modes. The medium parameters are: εr1 = 1, µr1 = 1, εr2 = −2.5, µr2 = −2.5.
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Table 1: Complete mode spectrum for dielectric slab (DPS and DNG).
Spectrum DPS DNG

Discrete evanescent real surface mode
α = 0, (β/k0)

2 > εr2µr2
Improper Proper

Discrete ordinary real surface mode
α = 0, εr1µr1 < (β/k0)

2 < εr2µr2
Proper/Improper Proper/Improper

Continuous radiation mode
α = 0, −∞ < (β/k0)

2 < εr1µr1
Proper Proper

Discrete complex surface mode
α 6= 0, β 6= 0 Improper Proper

3.4 Dispersion Diagrams and Power Flow

Figure 7 shows dispersion diagrams for both TE and TM modes for a DNG slab, including evanes-
cent, ordinary, and complex surface modes. Also included are real improper modes drawn as dotted
lines. When the electric size of the dielectric slab is much smaller than the cutoff electric size of
the first real mode, all complex modes exist with very high normalized α and β, or in terms of
wave properties, very high attenuation and very slow phase velocity. As the k0d increases, β/k0

tends to decrease rapidly within a very narrow range followed by a steady increase until its cutoff
point. Notice that it is not monotonic and the value of β/k0 can be less than unity (so called fast
wave), a notable difference compared with real surface modes in a DPS medium. The curve of
α/k0, however, monotonically decreases very fast as k0d increases. At the cutoff point, α reaches
zero and β becomes the starting point of a real mode. The real surface mode bifurcates into two
branches from the cutoff point. One branch has an increasing β/k0 as k0d becomes bigger while the
other has a decreasing β/k0. The branch with an decreasing β/k0 will reach unity shortly. Further
increasing electric size makes β/k0 of the second branch begin to rise. However, it is no longer
a proper mode. Note that the figures are plotted as functions of normalized electrical dimension
of the slab and we keep using k0d instead of frequency. Thus the above argument can be used
for inherently dispersive DNG metamaterials, as long as one interprets them as fixed operating
frequency while the layer thickness is changing.

As a comparison, the dispersion diagram of a DPS slab is plotted in Figure 8. Note that there
is no cutoff for TM0 mode and all dispersion curves are monotonic increasing as the electric size
increases.

From the above results, even for ordinary real surface modes, DNG media impose a lot of dif-
ficulties by introducing a bifurcation near its cutoff frequency. A typical dispersion curve of TE3
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Figure 8: Dispersion diagram of TE modes (dashed lines) and TM modes (solid lines) for double
positive material. The medium parameters are: εr1 = 1, µr1 = 1, εr2 = 2.5, µr2 = 1.

mode is shown in Fig. 9(a), along with its power flow in Fig. 9(b). From Fig. 9(a), it is seen that
only a complex mode exists (branch ‘A’) when k0d is lower than its cutoff threshold. As shown in
Section 3.2, the zero power flow in Fig. 9(b) shows that the complex surface mode does not carry
away power in ρ-direction as proved in [27]. With the electric size continuing to increase, two real
surface modes show up from the cutoff point. The top branch (branch ‘B’) has a negative power
flow (power flow direction is opposite to the wave propagation direction) and shows backward prop-
erties. When a waveguide operates at this mode, its fields largely are confined inside the dielectric
layer. The bottom branch (branch ‘C’) has a positive power flow and its fields extend far away in
the air region. When a waveguide operates at this mode, it does not exhibit backward properties.
Further increasing the electric size causes the fields in the air region to decay even more slowly and
eventually reach infinity. At that point, the radiation boundary conditions are violated and the
mode becomes improper.

As a comparison, the TE3 mode of a conventional double positive medium has a much simpler
dispersion curve, i.e., showing up at the cutoff point and monotonically approaching the limit of√

εr2µr2. Readers who are interested in detailed derivations and comparisons between DPS medium
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Figure 9: Dispersion diagram and the power flow in ρ-direction for TE3 mode. ‘A’ is for complex
surface mode; ‘B’ is for top branch of the real surface mode; ‘C’ is for bottom branch of the real
surface mode. The medium parameters are: εr1 = 1, µr1 = 1, εr2 = −2.5, µr2 = −2.5.

and DNG medium are directed to [27,36].

3.5 The Leaky Modes

Tamir and Kou studied leaky waves (complex waves) in an asymmetric slab [40] as shown in Fig-
ure 10, which the top and bottom half-spaces are different. They claim that there are eight different
leaky waves guided by an asymmetric layer configuration, but only four of the eight can be excited
in conventional DPS materials. Those eight leaky waves can be divided as four forward and four
backward leaky waves, or four co- and four contra-leaky waves as shown in Fig. 11. By co-leaky
waves it is meant that the fields in both regions (top and bottom half-spaces) increase or decrease
exponentially. The contra-leaky waves mean that the field in one region increases exponentially,
while the field in another region decreases exponentially. The distance between the arrows is in-
versely proportional to the field magnitude. It is found that for a lossless DPS grounded slab,
there are only two improper complex modes (leaky waves). If the slab is lossy, the conventional
surface wave modes become complex modes, which are called leaky waves by Tamir and Kou. A
plasma slab (negative ε) will add another type of proper complex modes (infinite number of discrete
complex modes) even the plasma is lossless. For a grounded DNG slab only two proper complex
modes exist for a lossless slab. If the slab is lossy, the proper surface wave modes may become
proper complex modes or improper complex modes.
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Figure 10: Diagram for an asymmetric slab (top and bottom half-spaces are different).

Figure 12 shows the leaky waves for a symmetric or grounded slab with double positive (DPS)
or double negative (DNG) materials. Tx or Bx for poles (modes) on top or bottom Riemann sheet,
x stands for which quadrant (1st to 4th). Forward and backward: forward wave or backward wave.
It is found that for a lossless DPS grounded slab, there are only two improper complex modes (leaky
waves) on B4 and B3. If the slab is lossy, the conventional surface wave modes become complex
modes on T4, which are called as leaky waves by Tamir and Kou. A plasma slab (negative ε) will
add another type of proper complex modes. For a DNG slab, there are proper complex modes on
T3 and T4 for both lossless and lossy slab.

For a grounded slab with DNG materials, only two proper complex modes exist for a lossless
slab. If the slab is lossy, the proper surface wave modes may become proper complex modes or
improper complex modes. For a complete mode spectrum, please refer to Table 2.

3.6 Mode Loci vs. Frequency/Thickness

Knowing mode distributions and behaviors in the complex γρ-plane is important in solving dielec-
tric waveguide problems, excitation problems, and microwave strip problems. It provides an initial
guess when using Newton’s method to find solutions. In performing Sommerfeld integrations, we
resort to mode loci to conceive a proper integral path which is an essential step in solving an exci-
tation problem. In this and next sub-sections, we will first examine how complex modes change as
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Figure 11: Leaky waves in an asymmetric slab as shown in Figure 10. The distance between the
arrows is inversely proportional to the field magnitude.

Table 2: Complete Spectrum of Dielectric Slab
Modes Finite number,

discrete evanes-
cent surface
mode

Finite num-
ber, discrete
normal sur-
face mode

Infinite num-
ber, discrete
complex mode

Continuous
mode

DPS (TE, TM) Improper Proper/impr. Improper Proper

Negative ε
TE Improper None Improper Proper
TM Proper None Proper Proper

Negative µ
TE Proper None Proper Proper
TM Improper None Improper Proper

DNG (TE, TM) Proper Proper/impr. Proper Proper

the electric size k0d varies. Later we will study mode loci in lossy medium.
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Figure 12: Leaky waves in a symmetric or grounded slab for both double positive (DPS) and double
negative (DNG) materials. Tx or Bx for poles (modes) on top or bottom Riemann sheet, x stands
for which quadrant (1st to 4th). Forward and backward: forward wave or backward wave. For a
DPS slab, there are improper complex modes on B4 and B3. If the slab is lossy, the proper complex
modes may exist on T4. For a DNG slab, there are proper complex modes on T3 and T4 for both
lossless and lossy slab.

For the most general case, the propagation constants are assumed to be complex as shown in
(47). The equations γ2

zi = −k2
0εriµri − γ2

ρ (i = 1, 2 for Region I or II) are functions of γ2
ρ , therefore

given γρ = α + jβ a solution, −γρ is also a solution. After some algebra operations, we have [39]

α2
z1 − β2

z1 + 2jαz1βz1 = −k2
1 − α2 + β2 − 2jαβ (48)

α2
z2 − β2

z2 + 2jαz2βz2 = −k2
2 − α2 + β2 − 2jαβ (49)

where k2
i = k2

0εriµri (i = 1, 2). To satisfy the equations for the imaginary part, one must have

αz1βz1 = αz2βz2 = −αβ (50)
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1

k0d = 1

1

k0d = 1

1

k0d = 2

1

k0d = 2

1

Figure 13: TM2 pole loci as the normalized thickness k0d increases. Medium parameters are:
εr1 = 1, µr1 = 1, εr2 = −2.5, µr2 = −1.6, k0d increases from 1 to 2.

Table 3: Possible sign choices of complex modes for lossless medium.
γ γ∗ −γ∗ −γ

(α, β) (+, +) (+, −) (−, +) (−, −)
(αz1, βz1) (+, −) (+, +) (+, +) (+, −)

(αz2, βz2) (+, −) or (+, +) or (+, +) or (+, −) or
(−, +) (−, −) (−, −) (−, +)

Simultaneously changing the sign of β and βz1 does not violate the above transcendental
eigenequations [39]. Therefore, γ∗ρ is also a solution. If γ∗ρ is a solution, from the previous ar-
gument we can conclude that −γ∗ρ is a solution as well. Table 3 lists the possible sign choices
for a lossless medium. The first two columns are solutions for outward waves and the last two
columns are solutions for inward waves. Those sign choices are very helpful to understand the be-
haviors of complex waves. For example, for the outward waves shown in the first two columns, βz1

has opposite sign of β. The wave propagates in a combining +ρ/−z direction or a −ρ/+z direction.

When electric size is small, only complex modes exist. According to the above conclusion,
complex modes always form a quartet for lossless media. Fig. 13 shows a particular mode TM2.
With electric size increasing, complex poles keep moving toward the real axis and become the
starting point of the bifurcated real modes. One of the two branches moves inward, touches the
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<e[kρ]

=m[kρ]

First Kind Poles

Second Kind Poles

Figure 14: TM2 real pole loci as loss tangent δ decreases from 0.4 to 0 with step size 0.08. Medium
parameters are: εr1 = 1, µr1 = 1, εr2 = −2.5(1 + jδ), µr2 = −1.6, k0d = 1.6.

branch point at k0d = π/
√

3 = 1.8138 for the parameters given in Fig. 13, and eventually becomes
improper mode. Meanwhile the other branch moves outward and approaches to

√
εr2µr2k0. This

behavior is also well-expected from the dispersion curve in Fig. 9(a). The same comments are also
applied to all other modes shown in Fig. 7 except TE1 and TM0, because they are not complex
modes for any electric size.

3.7 Mode Loci vs. Loss

In solving for the Green’s function of layered media or other excitation problems, electromagnetic
fields are often represented as Sommerfeld integrals [31,32]. A detailed discussion about Sommerfeld
integral is presented in next chapter. When performing integral evaluations, one needs to specify
the integral path. There is no problem for a lossy medium because all the surface wave poles are off
the real axis, and the inverse Fourier transform along the real axis converges due to the loss. For a
lossless medium, it is not straightforward to conceive a proper integral path because the integrand
blows up near poles in the real axis. [31] has a detailed analysis of Sommerfeld integral path (SIP)
for conventional lossless DPS material. In short, we assume a lossy medium first, then monitor
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<e[kρ]

=m[kρ]

Figure 15: TM2 complex pole loci as loss tangent δ increases from 0 to 0.4 with step size 0.08.
Medium parameters are: εr1 = 1, µr1 = 1, εr2 = −2.5(1 + jδ), µr2 = −1.6, k0d = 1.

how poles change as loss becomes smaller and smaller, and finally construct an integral path that
does not encounter any poles. However, when dealing with DNG material, we cannot use exactly
the same SIP as we do for conventional DPS material. Attention has to be paid to how different
kinds of poles change as the DNG medium loss approaches zero.

Fig. 14 shows TM2 pole loci when loss becomes smaller and smaller. The blue arrows show the
direction of decreasing loss. There are two kinds of surface wave modes. The first one has most of
its power flow in the air while the other has most of its power flow in the dielectric layer. When the
medium is lossy, the first kind of surface wave poles are in the second and fourth quadrants, and
the second kind of surface wave poles are in the first and third quadrants. As the loss approaches
zero, both merge to real axis.

Fig. 15 shows complex pole loci versus the medium loss. The blue arrows show the direction
of increasing loss. There are several observations: First, unlike the lossless medium where γ, −γ,
γ∗, and −γ∗ are all solutions, only γ and −γ are solutions. Second, as the loss becomes larger,
one pair of complex poles become faster and attenuate less (decreasing β and α), and the others
become slower and attenuate more (increasing β and α). This information may used in designing
leaky wave antenna with a large aperture with relative uniform field distributions.
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4 Sommerfeld Integral Path and Numerical Considerations

z

x

0
y

εr2, µr2

εr1, µr1

(a) Horizontal magnetic dipole

z

x

0
y

εr2, µr2

εr1, µr1

(b) Horizontal electric dipole

Figure 16: Horizontal magnetic dipole on PEC covered with DNG media and horizontal electric
dipole at the interface of grounded DNG media and air.

So far we have studied eigenproblems of grounded dielectric slabs of DNG media. When a finite
source such as shown in Fig. 16 is considered, the spectral domain approach is widely used. At
the very beginning of this section, we will introduce spectral domain approach. The HMD case
(configured as Fig. 16(a)) is solved as an example of this approach. It is found that the solutions
are expressed via a Green’s function. In a layered medium, the Green’s function is written as a
Sommerfeld-type integral [31], whose integrand has poles on the kρ-plane that correspond to the
eigenmode solutions of the same structure with source removed. In the rest of this section, a de-
tailed discussion about Sommerfeld Integral Path is presented.

4.1 Spectral Domain Approach

4.1.1 Hertz Potentials

The Hertz potentials are defined as

Eh = −jωµ∇×Πh (51)

He = jωε∇×Πe (52)

In source free and homogeneous isotropic region, both Πe and Πh satisfy the homogeneous vector
Helmholz equation (

∇2 + k2
i

)
Πe,h

i = 0 (53)
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In a layered structure whose material constants are only functions of z, the electromagnetic
fields are decoupled to TEz (Πe = 0, Πh = Πhzẑ) and TMz (Πe = Πezẑ, Πh = 0) modes [31]. Thus
Equation (53) is reduced to homogeneous scalar Helmholz equation whose cylindrical form is

[
1

ρ

∂

∂ρ
(ρ

∂

∂ρ
) +

1

ρ2

∂2

∂φ2
+

∂2

∂z2
+ k2

i

]
Πez,hz = 0 (54)

4.1.2 Fourier Transforms

Given that the Hertz potentials are solved, the electric and magnetic fields are found by

E = ∇×∇×Πe − jωµ∇×Πh = k2Πe +∇∇ ·Πe − jωµ∇×Πh (55)

H = ∇×∇×Πh + jωε∇×Πe = k2Πh +∇∇ ·Πh + jωε∇×Πe (56)

Taking the advantage of the symmetry of the problem, the Fourier transforms adopted by [43]
are used. They are

Πez(ρ, φ, z) = −2jπ sin φ

∫ ∞

0

F̃e(λ
2, z)J1(k0λρ)dλ (57)

Πhz(ρ, φ, z) = −2jπ cos φ

∫ ∞

0

F̃h(λ
2, z)J1(k0λρ)dλ (58)

With such Fourier transforms, (54) is converted to 1-D differential equation

[
d2

dz2
− γ2

zi

]
F̃e,h(λ, z) = 0 (59)

where γ2
zi = k2

0λ
2−k2

i = k2
0(λ

2−εriµri). Notice that λ = kρ/k0 is normalized transverse wavenumber.
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4.1.3 TE Fields in Cylindrical Coordinate

The fields of TE modes in spectrum domain are

Eρ = −jωµ
1

ρ

∂Πhz

∂φ
= 2πωµ sin φ

∫ ∞

0

F̃h(λ
2, z)

J1(k0λρ)

ρ
dλ (60a)

Eφ = jωµ
∂Πhz

∂ρ
= 2πωµ cos φ

∫ ∞

0

F̃h(λ
2, z)

[
k0λJ0(k0λρ)− J1(k0λρ)

ρ

]
dλ (60b)

Ez = 0 (60c)

Hρ =
∂2Πhz

∂ρ∂z
= −2jπ cos φ

∫ ∞

0

F̃ ′
h(λ

2, z)

[
k0λJ0(k0λρ)− J1(k0λρ)

ρ

]
dλ (60d)

Hφ =
1

ρ

∂2Πhz

∂φ∂z
= 2jπ sin φ

∫ ∞

0

F̃ ′
h(λ

2, z)
J1(k0λρ)

ρ
dλ (60e)

Hz = (
∂2

∂z2
+ k2)Πhz = −2jπ cos φ

∫ ∞

0

[
F̃ ′′

h (λ2, z) + k2F̃h(λ
2, z)

]
J1(k0λρ)dλ

= −2jπk2
0 cos φ

∫ ∞

0

λ2F̃h(λ
2, z)J1(k0λρ)dλ (60f)

where F̃ ′
h(λ

2, z) and F̃ ′′
h (λ2, z) are the first and second order derivatives with respect to z.

In deriving the above formula, the following identity is used

dJ1(k0λρ)

dρ
=

1

ρ
[k0λρJ0(k0λρ)− J1(k0λρ)] (61)

When ρ = 0, we have limρ→0 = J1(k0λρ)
ρ

= k0λ
2

, the above formulas are simplified to

Eρ = 2πωµ sin φ

∫ ∞

0

F̃h(λ
2, z)

k0λ

2
dλ (62a)

Eφ = 2πωµ cos φ

∫ ∞

0

F̃h(λ
2, z)

k0λ

2
dλ (62b)

Ez = 0 (62c)

Hρ = −2jπ cos φ

∫ ∞

0

F̃ ′
h(λ

2, z)
k0λ

2
dλ (62d)

Hφ = 2jπ sin φ

∫ ∞

0

F̃ ′
h(λ

2, z)
k0λ

2
dλ (62e)

Hz = 0 (62f)
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4.1.4 TM Fields in Cylindrical Coordinate

The fields of TM modes in spectrum domain are

Eρ =
∂2Πez

∂ρ∂z
= −2jπ sin φ

∫ ∞

0

F̃ ′
e(λ

2, z)

[
k0λJ0(k0λρ)− J1(k0λρ)

ρ

]
dλ (63a)

Eφ =
1

ρ

∂2Πez

∂φ∂z
= −2jπ cos φ

∫ ∞

0

F̃ ′
e(λ

2, z)
J1(k0λρ)

ρ
dλ (63b)

Ez = (
∂2

∂z2
+ k2)Πez = −2jπ sin φ

∫ ∞

0

[
F̃ ′′

e (λ2, z) + k2F̃e(λ
2, z)

]
J1(k0λρ)dλ

= −2jπk2
0 sin φ

∫ ∞

0

λ2F̃e(λ
2, z)J1(k0λρ)dλ (63c)

Hρ = jωε
1

ρ

∂Πez

∂φ
= 2πωε cos φ

∫ ∞

0

F̃e(λ
2, z)

J1(k0λρ)

ρ
dλ (63d)

Hφ = −jωε
∂Πez

∂ρ
= −2πωε sin φ

∫ ∞

0

F̃e(λ
2, z)

[
k0λJ0(k0λρ)− J1(k0λρ)

ρ

]
dλ (63e)

Hz = 0 (63f)

where F̃ ′
h(λ

2, z) and F̃ ′′
h (λ2, z) are the first and second order derivatives with respect to z.

When ρ = 0, we have

Eρ = −2jπ sin φ

∫ ∞

0

F̃ ′
e(λ

2, z)
k0λ

2
dλ (64a)

Eφ = −2jπ cos φ

∫ ∞

0

F̃ ′
e(λ

2, z)
k0λ

2
dλ (64b)

Ez = 0 (64c)

Hρ = 2πωε cos φ

∫ ∞

0

F̃e(λ
2, z)

k0λ

2
dλ (64d)

Hφ = −2πωε sin φ

∫ ∞

0

F̃e(λ
2, z)

k0λ

2
dλ (64e)

Hz = 0 (64f)

4.1.5 Rewriting as Infinite Integrals

Equation (60) and (63) are integrals from 0 to ∞. It is cumbersome to do steepest descent trans-
formation for semi-infinite integrals. Thus we want to rewrite them to integrals from −∞ to ∞ by
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using the formula of

Jν(z) =
1

2

[
H(1)

ν (z) + H(2)
ν (z)

]
(65)

H(2)
ν (ze−πj) = −eνπjH(1)

ν (z) (66)

The general form of semi-infinite integrals involving J0 are

I0 =

∫ ∞

0

Φ(λ2)λJ0(λ)dλ

=
1

2

∫ ∞

0

Φ(λ2)λ
[
H

(1)
0 (λ) + H

(2)
0 (λ)

]
dλ

=
1

2

∫ ∞

0

Φ(λ2)λ
[
−H

(2)
0 (−λ) + H

(2)
0 (λ)

]
dλ

=
1

2

∫ ∞

−∞
Φ(λ2)λH

(2)
0 (λ)dλ (67)

The general form of semi-infinite integrals involving J1 are

I1 =

∫ ∞

0

Φ(λ2)J1(λ)dλ

=
1

2

∫ ∞

0

Φ(λ2)
[
H

(1)
1 (λ) + H

(2)
1 (λ)

]
dλ

=
1

2

∫ ∞

0

Φ(λ2)
[
H

(2)
1 (−λ) + H

(2)
1 (λ)

]
dλ

=
1

2

∫ ∞

−∞
Φ(λ2)H

(2)
1 (λ)dλ (68)

4.1.6 Total Fields in Cylindrical Coordinate

From the previous two sections, the total fields are written below. It will be seen later that a
numerical difficulty is avoided by doing this combination.
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Eρ = π sin φ

∫ ∞

−∞

[
ωµF̃h(λ

2, z) + jF̃ ′
e(λ

2, z)
] H

(2)
1 (k0λρ)

ρ

+ π sin φ

∫ ∞

−∞
−jk0λF̃ ′

e(λ
2, z)H

(2)
0 (k0λρ)dλ (69)

Eφ = π cos φ

∫ ∞

−∞
−

[
ωµF̃h(λ

2, z) + jF̃ ′
e(λ

2, z)
] H

(2)
1 (k0λρ)

ρ
dλ

+ π cos φ

∫ ∞

−∞
ωµk0λF̃h(λ

2, z)H
(2)
0 (k0λρ)dλ (70)

Ez = jπk2
0 sin φ

∫ ∞

−∞
−λ2F̃e(λ

2, z)H
(2)
1 (k0λρ)dλ (71)

Hρ = π cos φ

∫ ∞

−∞

[
ωεF̃e(λ

2, z) + jF̃ ′
h(λ

2, z)
] H

(2)
1 (k0λρ)

ρ
dλ

+ π cos φ

∫ ∞

−∞
−jk0λF̃ ′

h(λ
2, z)H

(2)
0 (k0λρ)dλ (72)

Hφ = π sin φ

∫ ∞

−∞

[
ωεF̃e(λ

2, z) + jF̃ ′
h(λ

2, z)
] H

(2)
1 (k0λρ)

ρ
dλ

+ π sin φ

∫ ∞

−∞
−ωεk0λF̃e(λ

2, z)H
(2)
0 (k0λρ)dλ (73)

Hz = jπk2
0 cos φ

∫ ∞

−∞
−λ2F̃h(λ

2, z)H
(2)
1 (k0λρ)dλ (74)

If ρ = 0, the total fields are

Eρ = 2π sin φ

∫ ∞

0

[
ωµF̃h(λ

2, z)− jF̃ ′
e(λ

2, z)
] k0λ

2
dλ (75)

Eφ = 2π cos φ

∫ ∞

0

[
ωµF̃h(λ

2, z)− jF̃ ′
e(λ

2, z)
] k0λ

2
dλ (76)

Ez = 0 (77)

Hρ = 2π cos φ

∫ ∞

0

[
ωεF̃e(λ

2, z)− jF̃ ′
h(λ

2, z)
] k0λ

2
dλ (78)

Hφ = 2π sin φ

∫ ∞

0

−
[
ωεF̃e(λ

2, z)− jF̃ ′
h(λ

2, z)
] k0λ

2
dλ (79)

Hz = 0 (80)
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4.1.7 Solving F̃e and F̃h

Now let us solve the equation (59) for F̃ei and F̃hi (i = 1, 2). The air region (region 1) is unbounded,
so the general solution of Hertz potential is

F̃e1 = Ae−γz1(z−d) (81)

F̃h1 = De−γz1(z−d) (82)

The Hertz potential in the dielectric layer (region 2) is

F̃e2 = B sinh [γz2(d− z)] + C cosh [γz2(d− z)] (83)

F̃h2 = E sinh [γz2(d− z)] + F cosh [γz2(d− z)] (84)

At medium-air interface, applying boundary conditions for TE and TM modes, we get

µr1F̃h1 = µr2F̃h2 (85)

∂F̃h1

∂z
=

F̃h2

∂z
(86)

εr1F̃e1 = εr2F̃e2 (87)

∂F̃e1

∂z
=

F̃e2

∂z
(88)

Now we have four equations with six unknowns

εr1A = εr2C (89)

γz1A = γz2B (90)

µr1D = µr2F (91)

γz1D = γz2E (92)

We need two more equations to solve the problem. They are found by invoking the boundary
condition ẑ×E2 = −Ms at z = 0 (the tangential component of the electric field has a discontinuity
if there is a finite magnetic surface current). But the TE and TM modes are no longer decoupled
anymore at z = 0 and total electric fields must be used

E2x

∣∣
z=0

= E2ρ cos φ− E2φ sin φ = 0 (93)

E2y

∣∣
z=0

= E2ρ sin φ + E2φ cos φ = Pmδ(x)δ(y) (94)

where Pm is the magnetic dipole moment (magnetic current times length).
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From (93), we have

ωµ2F̃h2 + jF̃ ′
e2 = 0

∣∣
z=0

(95)

The left hand of (94) is

E2ρ sin φ + E2φ cos φ = 2πωµ2

∫ ∞

0

k0λF̃h(λ
2, z)J0(k0λρ)dλ (96)

In the right hand, using the identity in [31], p. 575, we have

Pmδ(x)δ(y) =
Pm

2πρ
δ(ρ) =

Pm

2π

∫ ∞

0

λJ0(λρ)dλ =
Pmk2

0

2π

∫ ∞

0

λJ0(k0λρ)dλ (97)

In equating (96) and (97), one get

−2jπk0F̃
′
e2 = 2πωµ2k0F̃h2 =

Pmk2
0

2π
(98)

or

F̃h2

∣∣
z=0

=
Pmk0

4π2ωµ2

(99)

Now we have six equations and six unknowns. Upon solving the equations, we get

A = −jk0Pmεr2

4π2DTM

B = −jk0Pmεr2γz1

4π2DTMγz2

C = −jk0Pmεr1

4π2DTM

D =
Pmk0γz2µr2

4π2ωµ2DTE

E =
Pmk0γz1µr2

4π2ωµ2DTE

F =
Pmk0γz2µr1

4π2ωµ2DTE
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And for F̃e,h, we have

F̃e1 =
−jPmk0εr2

4π2DTM

e−γz1(z−d) (100a)

F̃e2 =
−jPmk0

4π2DTMγz2

{εr2γz1 sinh[γz2(d− z)] + εr1γz2 cosh[γz2(d− z)]} (100b)

F̃h1 =
Pmγz2

4π2η0DTE

e−γz1(z−d) (100c)

F̃h2 =
Pm

4π2η0DTEµr2

{µr2γz1 sinh[γz2(d− z)] + µr1γz2 cosh[γz2(d− z)]} (100d)

where

DTE = µr2γz1 sinh(γz2d) + µr1γz2 cosh(γz2d) (101)

DTM = εr2γz1 cosh(γz2d) + εr1γz2 sinh(γz2d) (102)

They are the same as the eigen equations we derived earlier.
Their derivatives with respect to z are

F̃ ′
e1 =

jPmεr2k0γz1

4π2DTM

e−γz1(z−d) (103a)

F̃ ′
e2 =

jPmk0

4π2DTM

{εr2γz1 cosh[γz2(d− z)] + εr1γz2 sinh[γz2(d− z)]} (103b)

F̃ ′
h1 =

−Pmγz2γz1

4π2η0DTE

e−γz1(z−d) (103c)

F̃ ′
h2 =

−Pmγz2

4π2η0DTEµr2

{µr2γz1 cosh[γz2(d− z)] + µr1γz2 sinh[γz2(d− z)]} (103d)

4.2 Sommerfeld Integral Path (SIP)

After the proper integral path has been conceived, it is often deformed to the branch cut (BC) to
provide a spectral representation (combination of all possible proper modes including both discrete
and continuous modes) or to steepest descent path (SDP) shown in Fig. 17 to approximately the
far field efficiently [31]. According to Cauchy theorem,

ISIP = INP − 2πj
∑

i

Res[f(kρ), kρi] (104)
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where ISIP is the integral along the Sommerfeld integral path (SIP), INP is the integral along a
new path (NP), which is usually chosen to be a BC or a SDP. The last term is the contribution
from all poles enclosed by these two paths.

B2B3 T1 T4

T3T2 B4 B1

-π
-
π

2

0 π

2

π

σ

η

 

 

Branch point
SIP
Branch cut
SDP
Proper modes
Improper modes

Figure 17: Poles and integral paths in transformed φ-plane. Medium parameters are: εr2 = −2.5−
j0.1, µr2 = −2.5, k0d = 2. Observation angle θ = 60◦ (z = 0).

As one of the most commonly used transformations by mathematicians and physicists, the
conformal mapping of

kρ = k1 sin φ (105)

where k1 is the wavenumber in air region and φ = σ+jη is a complex number, maps the overlapped
Riemann sheet to an unfolded φ-plane [36, 41]. Fig. 17 plots poles and integral paths and branch
cuts in φ-plane in a much clearer way. It is clearly shown that real surface modes, complex surface
modes in the third and fourth quadrants, and continuous radiation modes from the branch cuts
form a complete mode spectrum of DNG medium.
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When the medium is lossy, all poles are not along the real axis in general. So the Sommerfeld
integrand can be evaluated along the real axis without any difficulty. But when the medium is
lossless, the poles are located on the real axis. All integrands in the last section have DTE or DTM

in their denominator. Thus those integrands go to infinite at those poles along the real axis. A
common way to address this difficulty is to assume the medium lossy and then monitor how the
pole loci change as the loss becomes smaller and smaller. For the lossy medium, the SIP is along
the real axis. When the loss is zero, the poles are on real -axis and the SIP should be deformed
lettle away from those poles. From Fig. 14, it is quite natural that one chooses the SIP as shown
in Fig. 18(a). As a comparison, Fig. 18(b) shows the SIP for a DPS medium. From Fig. 9, it
is observed that the first kind of poles corresponds to forward surface modes (the power flows in
the same direction as the phase velocity), while the second kind of poles corresponds to backward
surface modes. When the medium is lossy, all first kind poles are located in the second and fourth
quadrants and all second kind poles are in the first and third quadrants. Now, consider the cases
shown in Fig. 16. The branch C in the figure is the first kind and the branch B is the second kind.
Because the power always leaves from the source, one must include the first type of poles with
kρ > 0 and the second type of poles with kρ < 0 as shown in Fig. 18(a). So both included modes
carry away power from the source even they have opposite phase velocity.

<e[kρ]

=m[kρ]

SIP

Branch Cut

First Kind Poles

Branch Point

Second Kind Poles

(a) DNG media

<e[kρ]

=m[kρ]

SIP

Branch Cut

Surface Poles

Branch Point

(b) DPS media

Figure 18: Poles and Sommerfeld integral paths in kρ-plane.
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4.3 Residue at Origin

Usually, the Sommerfeld integrand involves Bessel/Hankel functions for layered media [31]. As the
integral variable approaches the origin, the argument of the Bessel/Hankel function approaches
zero. The small argument first order Bessel function can be approximated as [42]

J1(z) ≈ z

2Γ(2)
=

z

2
(106)

Y1(z) ≈ − 2

πz
+

2

π
J1(z) ln

z

2
(107)

Therefore, the first order Hankel function H
(2)
1 (z) = J1(z) + jY1(z) has a simple pole at origin

introduced by its imaginary part Y1(z). Special care must be taken to account for it otherwise
the integral can’t be performed. Generally, there are two ways to overcome this difficulty. As an
example, we will study a dipole at the interface of a grounded dielectric slab and air.

The first method is to simply combine the TE fields and TM fields together in order to calculate
the total field. From [39,43], the total electrical field at ρ-direction reads

Eρ =

{∫ ∞

−∞

[
ωµF̃h(λ

2, z) + jF̃ ′
e(λ

2, z)
] H

(2)
1 (k0λρ)

ρ
dλ

−j

∫ ∞

−∞
F̃ ′

e(λ
2, z)k0λH

(2)
0 (k0λρ)dλ

}
π sin φ (108)

where λ = kρ/k0 and the details of F̃e and F̃h can be found in 4.1.7.

There is no first order pole in the second term. For the first term, ωµF̃h(λ
2, 0) 6= 0 and

jF̃ ′
e(λ

2, 0) 6= 0. However, as proved in [39], their summation
[
ωµF̃h(λ

2, z) + jF̃ ′
e(λ

2, z)
]

is zero at

origin. Therefore, we have a zero to cancel out the simple pole at origin and the integral will not
encounter any problems.

When a combination of the TE and TM fields is not allowed, such as when one wants to
calculate the contributions from TE and TM modes separately, we have to resort to the second
method: treat TE and TM case separately. Usually, it can be proved to be a Cauchy principal
value (CPV) problem and calculated as

I = lim
ε→0

[∫ 0−ε

−∞
+

∫ ∞

0+ε

]
f(z)dz (109)

It is more complicated when one deforms the integral path to a BC or a SDP as mentioned pre-
viously. In this case, one has to artificially add a small segment to the integral path to close the

40



0

−k1 k1

−ǫ ǫ

ISIP = I0

IBC

Figure 19: Integral paths near the origin.

integral path since we cannot apply Cauchy’s theorem to a CPV integral (because it has a gap),
and later subtract it from the result. As an example, let us take a look at the TE component of
equation (108)

Eρ = πωµ sin φ

∫ ∞

−∞
F̃h(λ

2, z)
H

(2)
1 (k0λρ)

ρ
dλ (110)

= 2πωµ sin φ

∫ ∞

0

F̃h(λ
2, z)

J1(k0λρ)

ρ
dλ (111)

Because the Bessel function Jν(z) is an entire function, we have

I0 =

∫ ∞

0

f(kρ)Jν(kρρ)dkρ = lim
ε→0

∫ ∞

ε

f(kρ)Jν(kρρ)dkρ (112)

Now if written in Hankel form, the integral I0 is

I0 = lim
ε→0

[∫ 0−ε

−∞
+

∫ ∞

0+ε

]
f(kρ)H

(2)
ν (kρρ)dkρ (113)

Therefore, the original integral (110) is actually a CPV problem with integral path shown as a solid
black line in Fig. 19.

When the integral path is detoured to a BC, in order to apply the Cauchy residue theorem, one
has to cover the infinitesimal small gap of the CPV path by deliberately adding a small segment
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at origin as drawn with a dashed line in Fig. 19. Now, with that small segment added, one has

ISIPH = ISIP + πjR+ (114)

where ISIP is the original integral, ISIPH is the integral with the small gap covered, and R+ is the
residue at the positive edge of the branch cut. Similarly for BC path,

IBCH = IBC +
πj

2
(R+ −R−) (115)

where IBC is the CPV integral along BC, IBCH is the integral with the small gap covered, and R+

and R− is the residue at the positive and negative edges of the branch cut. Applying the Cauchy
residue theorem to ISIPH and IBCH , one has

ISIPH = IBCH − 2πj
∑

i

Res[f(z), ki] (116)

Finally, one arrives at

ISIP = IBC −
πj

2
(R+ + R−)− 2πj

∑
i

Res[f(z), ki] (117)

The calculation of the residue at the origin is straightforward. When λ → 0, the integrand is
approximated as

F̃h(λ
2, z)

H
(2)
1 (k0λρ)

ρ
=

F̃h(0, z)

ρ
[J1(k0λρ)− jY1(k0λρ)]

≈ F̃h(0, z)

ρ

2j

πk0λρ
(118)

The residue of the integrand at the origin is then

R± =
2jF̃h(0, z)

πk0ρ2

∣∣∣
γz1=±jk1

(119)

Fortunately, it is only in rare cases that one needs to pay attention to the aforementioned
details. Most of the numerical calculations can be performed using the Bessel function form of the
Sommerfeld integrals. Therefore, the original [−∞,∞] integral range is folded to [0,∞], and there
is no problem at the origin. One must pay attention to including the pole at the origin only when
the complex plane analysis is needed.
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Figure 20: Convergence tests of equation (120) and (123).

4.4 Numerical Integration Along SIP

It is found that the convergence of the Sommerfeld integral along SIP in kρ-plane is very slow. As
an example, we test two integrals that have exact solutions. They are Hz and Ez in free space

Hz =

∫ ∞

0

λ2e−γz1zJ1(k0λρ)dλ (120)

Ez =

∫ ∞

0

λ2 1

γz1

e−γz1zJ1(k0λρ)dλ (121)

For simplicity purpose, both Hz and Ez in above equations are normalized with the coefficient:

−2jπk2
0Pm cos φ

4π2η0µr1

(122)

In (120), the integrand is smooth along the integral path. However, its first derivative has singu-
larity at λ = 1. For this reason, the convergence is very slow. The integrand of (121) is even worse
as its integrand blows up at λ = 1. But it is still integrable at λ = 1.
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The above two equations are transformed to λz1-plane, and now λz1 = kz1/k0 becomes the
integration dummy variable. Also changed is the integral path that is mapped to a different shape
in λz1-plane

Hz =

[∫ 0

1

+

∫ −j∞

0

]
λλz1e

−γz1zJ1(k0λρ)dλz1 (123)

Ez =

[∫ 0

1

+

∫ −j∞

0

]
λe−γz1zJ1(k0λρ)dλz1 (124)

The comparisons of convergences of (120) and (123) are plotted in Fig. 20. The integration in kz1-
plane (or λz1-plane) is far superior to the integration in kρ-plane (or λ-plane). Similar conclusions
apply to (121) and (124). The reason is because (123) and (124) now have continuous high order
derivatives and thus their convergence is much faster than (120) and (121).
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5 Numerical Examples and Optimization for Directivity

In this section, two important radiation problems — a horizontal magnetic dipole (HMD) on PEC
covered with DNG media and a horizontal electric dipole (HED) at the interface of grounded DNG
media and air shown in Fig. 16 — are solved using Sommerfeld integrations. They are of great
importance in that they provide Green’s function to slot antennas and microstrip patch antennas,
because Green’s functions are electric and magnetic fields generated by electric dipoles on the
interface or magnetic dipoles on the metal surface. We also investigated the radiation intensity and
directivity of electric/magnetic dipoles over a grounded slab to find optimal values of the material
parameters and thickness for a given frequency.

5.1 Numerical Example of New SIP Path for DNG Media
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Lossless medium with proposed SIP
Lossless medium with conventional SIP
Lossy medium with SIP along real axis

Figure 21: The examination of the proper Sommerfeld integral path for DNG medium. k0d = 2,
εr2 = −2.5 − jδ, µr2 = −2.5. Solid line is for δ = 0.01; dashed line is for δ = 0 and our proposed
SIP; dash dot line is for δ = 0 and conventional SIP.

The first numerical example is to verify the validation of the newly proposed Sommerfeld integral
path for DNG media. The electric fields of a horizontal electric dipole at the interface of air and
a grounded dielectric DNG medium slab are calculated along the interface by our program which
can handle both lossy and lossless media. In Fig. 21, the solid line is for a lossy medium whose
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permittivity is εr2 = −2.5−0.01j. As the loss keeps all surface mode poles off the real axis, i.e., kρ-
axis, we do not encounter any numerical troubles. More importantly, the SIP can be unambiguously
defined along the real axis and both ordinary surface wave modes with the first kind of pole (such as
TM2 ) and with both kind of pole (such as TE3) are excited, which can be confirmed by Fig. 7 with
k0d = 2. The dashed line in Fig. 21 shows the total field (as a function of distance from source) for
the same medium with loss removed, using the new SIP proposed in Section 4. It is seen that these
two lines are closely lined up at the near field where the attenuation is hardly appreciable. As we
move away to the far field, the electric field in the lossy medium undergoes more attenuation and
we see more deviations from the dashed line, but they exhibit the same oscillation behavior with
the same rhythms. This proves the correctness of the new SIP. The dash-dot line is the calculation
for the same lossless medium, except that the SIP for DPS medium is used, as shown in Fig. 18(b).
It deviates from either the blue solid line or dashed line. In summary, Fig. 21 justifies our proposed
Sommerfeld integral path.

5.2 The Discrete Pole Contribution of DNG Media

The second example solves a horizontal magnetic dipole on a PEC covered by a DNG slab as
shown in Fig. 16(a). The problem is also studied by P. Baccarelli et al. [18]. The permittivity and
permeability of this material are modeled as [6, 2]

µr(ω) = 1− Fω2

ω2 − ω2
0

and εr(ω) = 1−
ω2

p

ω2
(125)

where F = 0.56, ω0/2π = 4 GHz, and ωp/2π = 10 GHz. The material simultaneously exhibits
negative permittivity and permeability from f = 4 GHz to 6.03 GHz [18].

Figure 22 plots the total electric field as a blue solid line and it exactly agrees with [18]. Also
plotted in red dashed line is the electric field from the discrete mode contribution. This includes
the evanescent surface mode TM0 (first kind), complex surface modes TM2 and TE3, and all other
higher order complex modes. A very interesting phenomenon is observed: unlike a DPS medium,
which always has at least one surface pole whose contribution goes to infinity as the observation
point moves towards the source, the DNG medium’s large number of discrete poles tends to have
some cancellation effect that limits their contribution to a finite value even when the observation
point is very close to the source. Notice that in our calculation, 400 modes are used in order to
achieve accurate pole contributions. For the field of single mode, it should be inverse proportional
to the square root of ρ, But our numerical results from the figure show that the total pole con-
tributions (with 400 poles) become finite when the ρ approaches zero (the red dashed line). The
similar plot is also given in [18] with smaller number of modes included.
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Figure 22: The comparison of our results to reference [18]. The medium parameters are exactly
the same as in [18], the thickness is 60 mm, and the frequency is 5.6 GHz.
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Figure 23: The electric fields due to the pole contributions and the difference between the integrals
along the SIP and BC. The medium parameters are given by (125), the frequency is 4.8 GHz, and
the thickness is 20 mm.
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In Figure 23, we plot the electric fields due to the pole contributions and difference between the
integrals along the proposed SIP and along the BC. The frequency is 4.8 GHz and the thickness
of the slab is 20 mm. At this electric size, the evanescent surface mode TE1 (second kind) and
ordinary surface mode TM2 (both kinds), and complex surface modes are excited [21]. Excellent
agreement is observed from Fig. 23 and the relation shown in (104) is satisfied, which verifies the
correctness of our new proposed Sommerfeld integral path for DNG medium.

5.3 3-D Radiation Patterns (linear scale) of HED and HMD with DNG
Media

The radiation patterns associated with the structures in Fig. 16 are shown in Fig. 24. The media
parameter defined in (125) is used in the calculations. The frequency is chosen at f = 5.943 GHz
as it gives the best directivity [18,39]. The medium parameters at this frequency are εr2 = −1.831
and µr2 = −0.0238. The thickness of the dielectric slab is d = 60 mm (k0d = 7.47 and kd = 1.56).
Maximum directivities are observed at the z-direction (broadside): 26.8 dB for HMD and a smaller
number 17.2 dB for HED due to some cancellation of the image from the ground. They are
drastically larger than the values of 8.5 dB and 12.0 dB, respectively, obtained for a conventional
DPS slab with (εr = 2.55 and µr = 1 at f = 5.4 GHz). Unlike the electromagnetic fields in
conventional DPS media where some of the energy is carried away by surface wave, the fields in
DNG medium tend to decay more slowly due to the existence of complex modes. Therefore, the
dipole with DNG media has a much larger equivalent aperture size that results in a much narrower
radiation beam. The microstrip antennas with DNG media can have compact size comparing the
antennas with conventional DPS meida.

5.4 Optimization for Directivity

One of the research interests is to find optimized values for the constitutive parameters of the struc-
ture shown in Fig. 16, for a specified k0d so that we can obtain high directivity in the broadside
direction. The HMD case (Fig. 16(a)) is taken as an example in the following discussion. In refer-
ence [18], it was found that that highly directive beams can be obtained by employing substrates
with a large ratio of |εr|/|µr|, because the broadside power density P (θ = 0) is proportional to this
ratio.

We further optimize k0d, εr, and µr to get the maximum directivity. Figure 25 shows how the
broadside directivity changes along εr and µr for a given k0d:

Figure 25 gives us an idea that for a given k0d, the broadside directivity may reaches a maxi-
mum when the product of εr and µr is equal to a certain value. This idea is confirmed by a further
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(a) Radiation pattern for Fig. 16(a) (b) Radiation pattern for Fig. 16(b)

Figure 24: Radiation patterns of HMD and HED associated with DNG media at f = 5.943 GHz.
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Figure 25: Contour plot of the directivity at the broad side over different εr and µr, d/λ0 = 1.

investigation of the data constructing Fig. 25. From that data we can also get the value of εrµr for
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Figure 26: Broadside directivity as a function of εr (εrµr = 0.062, d/λ0 = 1).

d/λ0 = 1 (k0d = 2π) is about 0.062. Numerical results of cases with different k0d values lead to
the same conclusion: for a given k0d, the broadside directivity is only a function of εr. Figure 26
is presented as a validation of this conclusion. Figure 26 also shows that a larger |εr| gives a larger
broadside directivity. Because the product of εr and µr is kept constant, the larger εr is, the larger
is the ratio of |εr|/|µr|. This agrees with the finding in [18].

To verify that εrµr is unique to have maximum directivity for a given d/λ0, we examine for a
small range of εrµr. Figure 27 is the contour plot of maximum broadside directivity as a function
of εr and the product of εrµr. From this figure we can see that for any εr, the maximum directivity
is always obtained when εrµr is the same certain value (some value between 0.06 and 0.065). So
we can conclude that to have maximum broadside directivity for a given d/λ0, the product of εrµr

should be a unique value c(k0d) = εrµr. Hereby we investigate the dependence between c(k0d) and
electric size. For the electric size in the range of our interest, that is 0.1 to 1 wavelength, we find
the optimized c(k0d) at 10 different electric sizes between 0.1 and 1 wavelength and fit the data
with a simple curve. The fitting result is presented in Fig. 28 and the fitted formula is given as

c(k0d) =
2.4635

(k0d)2
=

0.0624

(d/λ0)2
(126)
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where c(k0d) = εrµr.
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Figure 27: Contour plot of the directivity at the broad side over different εr and εrµr, d/λ0 = 1.

Now for any given electric size (d/λ0 or k0d) and relative permittivity εr we can calculate the
optimized relative permeability µr, so that we can get the maximum broadside directivity.

From the discussion above, we can summarize a procedure to get optimized constitutive para-
meters for a given k0d:

1. For any given d/λ0 (or k0d), we set εr to a proper value. Any εr in the range specified by the
application will do; it’s not important in this step because we just want to find the product of
εr and µr here, which is εr independent. And then we do a one variable optimization to find
the product of εr and µr so that the maximum broadside directivity is obtained. In Matlab,
there are certain commands which can help with the optimization.

2. If there is a range limit for εr, the directivity at the broad side is always obtained at the largest
absolute value of εr. The corresponding value of µr is obtained by using µr = c(k0d)/εr.

From the discussion above, we know that the maximum broadside directivity can be expressed
as a function of electric size d/λ0 and relative permittivity εr. Now we provide an approximate
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formula to estimate the maximum broadside directivity of this structure. To get the formula, the
maximum broadside directivities for different d/λ0 and εr are calculated numerically. We use a
formula with simple form and un-determined coefficients to fit the data and get the coefficients.
Finally we find that the maximum broadside directivity D0 can be obtained using the approximate
formula:

D0 = 155

(
d

λ0

)8/3

|εr| (127)

Figure 29 shows the validation of our approximate formula. By using Equation (127), we can
obtain an estimated maximum broadside directivity for a given electric size and relative permittiv-
ity. This formula is derived under the condition that |εr| >> |µr| and for a given εr and µr that
satisfy Equation (126). The numerical results in Fig. 29 show that this formula works in the range
0.2 < d/λ0 < 1.
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6 Conclusions, Publications, and Significant Events

In this final report, we first review the mode properties of a grounded DNG medium slab. The com-
plexity of the mode spectrum and pole behavior under parameter and frequency variations demands
a new Sommerfeld integral path that is different from the SIP for a conventional DPS medium,as
shown in Fig. 18(b). Two numerical issues associated with Sommerfeld integrals are studied in
great detail. A new Sommerfeld integral path is suggested to increase numerical convergence by
eliminating singularities of the integrand or the derivatives of the integrand. Numerical examples
are given to validate the necessity of a new Sommerfeld integral path. The electromagnetic fields
and radiation patterns of horizontal electric and magnetic dipoles with slabs of DNG media are
plotted. Due to the slowly decaying fields along the interface, the radiation directivity is greatly
enhanced.

We investigated the radiation intensity and directivity of electric/magnetic dipoles over a
grounded slab to find optimal values of material parameters and thickness for a given frequency.
We optimize the directivity over the thickness and the constitutive parameters. It is found that for
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a slab with a fixed electric size (proportional to the product of the thickness and frequency), the
directivity reaches the maximum when the product of εr and µr is constant, which depends on the
electric size only. The maximum directivity is proportional to the ratio between εr and µr. Finally,
the optimized structure to get maximum directivity at broadside is investigated and fitted formula
for the maximum directivity is provided.

In summary, we have

1. Found complete spectrum in ground DNG slab, studied surface wave suppression.

2. Derived the power flow for all discrete surface wave modes and found that the complex wave
modes in lossless slab do not carry away any power.

3. Plotted loci of complex (leaky) wave modes as functions of thickness and loss.

4. Derived field expressions for a HMD and HED over a grounded DNG slab and found that the
radtion patterns have large directivity.

5. Developed empirical formula for the directivity at broadside.

6. Found the correct Sommerfeld integral path for a DNG slab.
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Publications

W.W. Shu and J.M. Song, ”Sommerfeld Integral Path for Layered Double Negative Metamate-
rials,” IEEE Transactions on Antennas and Propagation, under review.

Collaborations

We have collaborated with Dr. Shore (AFRL Hansom) and Dr. Yaghjian (self-employed) on
leaky wave properties on dielectric slab and hybridization of analytical and numerical approaches
to study the band structures of metamaterials.

Significant Events

1. The PI attended the progress review meeting on April 27-28, 2010 in Arlington, Virginia, and
briefed the audience on our latest progress on this project.

2. On July 7, 2010, the PI visited AFRL-Hanscom and discussed with Drs. Shore and Yaghjian
on our recent progress and future directions for this project.

3. The PI attended 2011 Electromagnetics Contractors Meeting organized by Dr. Arje Nachman
from AFOSR between January 4 and 5 and met Dr. Yaghjian and other researchers in this
area.

What is Next?

1. Design antennas using DNG metamaterials: design patch antennas, aperture antennas with
excitation of leaky waves, optimize microstrip antenna performance (gain and bandwidth) for
different dimensions, thickness, loss, permittivity, and permeability.

2. Design antennas with real structures: use periodic structures for substrate and superstrate.
and work with experimental experts to make such antennas.

3. Reduce loss in metamaterials and increase antenna efficiency.

These antennas may have significant impacts on applications for Air Force.
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